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Abstract 
 
The process of design search and optimisation using 
Computational Fluid Dynamics (CFD) is computationally 
and data intensive, a problem well-suited to Grid 
computing. The Geodise toolkit is a suite of Grid-enabled 
design optimisation and search tools within the Matlab 
environment. The use of these tools by the engineer is 
facilitated by intelligent design advisers targeted initially 
at CFD. The role of remote computation and data access 
in constructing a Grid-enabled Problem Solving 
Environment is discussed. The use of the Geodise toolkit 
for design optimisation from within the Matlab 
environment is considered with an exemplar problem. 
 
1. Introduction 
 

The process of design search and optimisation 
involves the modelling and analysis of engineering 
problems to yield improved designs. Design parameters 
that the engineer wishes to optimise are identified, and a 
measure of the quality of a particular design (the 
objective function) is computed using an appropriate 
model. A number of design search algorithms may then 
be used to yield more information about the behaviour of 
a model over the parameter space, and to 
minimise/maximise the objective function to improve the 
quality of the design. This process may include lengthy 
and repetitive calculations to obtain the value of the 
objective function with respect to the design variables. 

Design optimisation with regard to fluid dynamics is 
relevant to, amongst others, the aerospace, automotive 
and oil industries. Computational Fluid Dynamics (CFD) 
allows the engineer to analyse the properties of a design. 
However, detailed analysis is computationally expensive. 
To perform the numerous solutions required for extensive 
parameter exploration during a design search in this 
domain normally requires access to significant 
computational resources. 

The computationally intensive problem domain of 
engineering design optimisation using CFD can be well 
matched to the field of Grid computing using appropriate 
search methods. Grid computing addresses the 
technologies and infrastructure to allow large-scale 
resource sharing and facilitate the performance of virtual 

organisations (VOs) that form to solve science and 
engineering problems [1]. Fundamental to Grid 
computing is the exposure and discovery of remote 
resources, in particular compute and data resources, that 
may represent a heterogeneous mix of technologies. 

The Geodise project [2] aims to aid the engineer in the 
design process by making available a suite of design 
optimisation and search tools and CFD analysis packages 
integrated with distributed Grid-enabled computing, data, 
and knowledge resources. Facilitating the use of such 
design search tools requires the integration of intelligent 
design advisers, which are able to support the engineer 
throughout the design process by providing ontology 
services, annotation services [3], and context sensitive 
advice based on the states of the computation. 

Engineering design search is also data intensive, and 
data may be generated at different locations with different 
characteristics. It is often necessary for an engineer to 
access a collection of data produced by design and 
optimisation processes to make design decisions, perform 
further analysis and carry out post-processing. Databases 
are valuable to expose the state of the design process to 
context sensitive design advisers, allowing them to 
provide dynamic advice to the user. Databases therefore 
play an essential role in our architecture, where it is 
important to capture the process of how results are 
obtained in addition to storing the results themselves.  

Traditionally, data in many scientific and engineering 
disciplines have been organised in application-specific 
file structures, and a great deal of data accessed within 
current Grid environments still exists in this form [4]. 
When there are a large number of files it becomes 
difficult to find, compare and share the data. Here we 
focus upon providing data management in an engineering 
environment by leveraging existing database tools that are 
not commonly used in this field, and making them 
accessible to users of the system. We use databases to 
store, maintain and access data associated with result and 
intermediate files, and authorisation control to improve 
the accessibility of the data and to encourage 
collaborations among the engineers. An important issue 
regarding data sharing in a VO is data access control, 
which includes authentication and authorisation. 
Authentication involves verifying the claimed identity of 
a user, whereas authorisation checks an authenticated 



users access rights for specific data and computational 
resources. A consistent access control mechanism for all 
the resources in a VO is required. 

We adopt a service approach for database integration 
into a Grid environment, providing other Grid 
applications with a well-defined interface for accessing 
and archiving data. The Data Access and Integration 
Services (DAIS) Working Group of the Global Grid 
Forum (GGF) [5] are developing requirements, 
functionalities and standards for Grid Database Services 
[4][6] in the Open Grid Services Architecture (OGSA) 
[7]. The DAIS activities were initiated by the UK e-
Science Programme Database Task Force [8]. In the 
future each of our Geodise specific data management 
services will communicate with the underlying databases 
through such services.  

All these objectives impose a number of requirements 
upon our choice of environment. The environment should 
provide an intuitive interface to the available Grid 
resources. A Grid-enabled Problem Solving Environment 
(PSE) abstracts the complexities of accessing the Grid by 
providing a complete suite of high level tools designed to 
tackle a particular problem area [9]. Nimrod/G [10] is a 
tool that facilitates parameter studies over computational 
Grids. Triana [11] is a graphical programming 
environment which abstracts the complexities of 
composing distributed workflows. 

Whilst it is possible to reduce the complexity of the 
technologies faced by the user, it is important that the 
environment chosen has the flexibility to tackle the 
subtleties of a wide range of workflows within the 
problem domain. A previous prototype that consisted of a 
wizard style web portal that guided the user through a 
design optimisation problem [12] proved inflexible, and 
the wizard would not scale to encompass a much larger 
number of problems. The complexity and variation of the 
workflows involved in the design process, mean that a 
scriptable environment that allows the user to tailor 
workflows to the task in hand is valuable. 

Here the user interface used to expose the functionality 
provided by the Geodise PSE is the commercial Matlab 
environment [13]. The Matlab package provides a fourth 
generation language for numerical computation, built-in 
math and graphics functions and numerous specialised 
toolboxes for advanced mathematics, signal processing 
and control design. The Matlab product is widely used in 
academia and industry to prototype algorithms, and to 
visualise and analyse data. Matlab 6.5 also features a 
number of 'just-in-time' acceleration technologies to 
increase the performance of native Matlab code. 

The rationale behind adopting Matlab as the user 
interface for the Geodise PSE is pragmatic. As a toolkit 
that may be integrated into an environment routinely used 
by our industrial and academic partners the Geodise PSE 
becomes a flexible tool, part of the engineer’s arsenal. 

The NetSolve system [14] which uses a client-server 
architecture to expose platform dependent software 
libraries has also successfully adopted Matlab as a user 
interface.  

The final Geodise toolkit will be composed of a 
hierarchy of components. Low level compute and 
database functions will be available to the user, in 
addition to powering a number of higher level design 
search, pre/post-processing, and CFD functions. All of 
these components will be available through a suite of 
intelligent design advisers that will guide the user through 
the design process, and facilitate the use of toolkit 
components. 

The remainder of this paper focuses on the process of 
exposing Grid enabled resources to the Matlab 
environment, allowing us to compose the required low 
level compute and data access functionality. We first 
describe the architecture and the functionality of the 
computation and database components of the toolkit. We 
then demonstrate the use of these functions in an example 
iteration of the design process. 
 
2. Geodise Toolkit 
 

The fundamental technologies behind the compute and 
data components of the Geodise toolkit are currently 
distinct and are described below. 
 
2.1. Computation 
 

The user of the Geodise toolkit acts as a client to 
remote compute resources that are exposed as Grid 
services. Users should be authenticated, and then 
authorised to access resources to which they have rights. 
They need to be able to submit their own code to compute 
resources, or run software packages that are available as 
services. The user should be able to discover the available 
resources, decide where to run a job and be able to 
monitor its status. It is essential that the user be able to 
easily  retrieve the results of a simulation. Additionally 
the requirements of design search and optimisation mean 
that compute resources must be available 
programmatically to algorithms that may initiate a large 
number of computationally intensive jobs serially or in 
parallel. 

The Globus toolkit [15] provides middleware that 
allow the composition of computational grids through the 
agglomeration of resources which are exposed as Grid 
services. This middleware provides much of the 
functionality required by our toolkit including 
authentication and authorisation (GSI), job submission 
(GRAM), data transfer (GridFTP) and resource 
monitoring and discovery (MDS).  

Client software to Globus Grid services exists natively 
on a number of platforms and also via a number of 



Commodity Grid (CoG) kits [16] that expose Grid 
services to ‘commodity technologies’; including Java 
[17], Python, CORBA [18], and Perl. By using client 
software to Grid services written for these commodity 
technologies the developer of a PSE is able to remain 
independent of platform and operating system.  

The independence allowed by adopting a commodity 
technology motivated development of the Geodise toolkit 
over the Grid service client APIs of the Java CoG kit 
v.0.9.13 [17]. Java [19] is a mature technology that runs 
compiled byte-code within a virtual machine. The Matlab 
environment itself runs within a Java Virtual Machine 
(JVM), and provides an external interface which allows 
Java classes to be instantiated and invoked easily within 
the Matlab workspace. The support of Java version 1.3.1 
by Matlab 6.5 provides the utility which makes the Java 
language suitable for programming Grid middleware. 

The Java CoG provides a number of low-level 
mappings, in the form of a number of Java packages, 
which are APIs to the respective Globus Grid service 
clients. To expose the functionality available from the 
Java CoG to the Matlab user it was important to present 
functions which are consistent with the behaviour and 
syntax of the Matlab environment. Functions are written 
in the interpretive Matlab language, and these call Java 
classes which access the Java CoG API. Functions are 
written with the intention that they may be incorporated 
programmatically into the higher level components of the 
toolkit.  

Table 1 describes the compute functions used by the 
Geodise 0.3 system. This set of functions describes the 
minimum functionality required to allow the user to run 
jobs on Globus compute resources. The functions may be 
loosely categorised into those concerned with the user’s 
credentials, job submission to the Globus Resource 
Allocation Manager (GRAM), and file transfer. 

 

Table 1: Compute commands. 

Function Name Description 
gd_createproxy Creates a Globus proxy certificate from 

the user's credentials 
gd_jobsubmit Submits a GRAM job, specified by a 

RSL string, to a Globus server. Returns 
a job handle to the user. 

gd_jobstatus Returns the status of the GRAM job 
specified by a job handle. 

gd_jobkill Terminates the GRAM job specified by 
a job handle. 

gd_listjobs Returns job handles for all GRAM jobs 
associated with the users credentials 
registered on a MDS server. 

gd_getfile Retrieves a file from a remote host using 
GridFTP. 

gd_putfile Transfers a file to a remote host using 
GridFTP. 

The Grid Security Infrastructure (GSI) [20] used by 
the Globus toolkit is based upon the Public Key 
Infrastructure (PKI) [21]. Under the PKI an individual’s 
identity is asserted by a certificate that is digitally signed 
by a Certificate Authority within a hierarchy of trust. In 
an extension to this standard the GSI allows a user to 
delegate their identity to remote processes using a 
temporally limited proxy certificate signed by the user’s 
certificate. The toolkit command gd_createproxy 
allows a user to create a Globus proxy certificate within 
the Matlab environment, essentially creating a point of 
single sign-on to the Grid resources that the user is 
entitled to use. 

The gd_jobsubmit command allows users to submit 
compute jobs to a GRAM job manager described by a 
Resource Specification Language (RSL) string. The 
gd_jobsubmit command returns a unique job handle 
which identifies the job. The job handle may be used to 
query or terminate the user’s job. In addition the 
gd_listjobs command may be used to query a 
Monitoring and Discovery Service (MDS) to return all 
the job handles associated with the user’s certificate. 

Two file transfer commands are provided to allow 
users to transfer files to and from Grid-enabled compute 
resources to which they have access. These commands 
support the high performance file transfer protocol 
GridFTP [22]. The GridFTP protocol defines a number of 
extensions to the FTP protocol to enable transfer of high 
volumes of data. 
 
2.2. Database 
 

Users need a simple, transparent way to store files in a 
repository along with additional information (metadata) 
about those files which will make it easier for members of 
a VO to find the files at a later date and use them 
effectively. This metadata should be generated 
automatically where possible and be provided by the user 
when necessary. They should be able to specify who else 
can discover and retrieve these files. A query mechanism 
should be available with facilities for interactive and non-
interactive use, so that files can be located 
programmatically in scripts. The engineer should be able 
to specify what kind of file they are looking for in an 
intuitive manner without necessarily needing knowledge 
of a database query language (e.g., SQL). Ideally the user 
should not need to know the name of the database or 
machine their data is stored on, or its underlying storage 
mechanism. It should also be possible to locally record a 
unique identification number for accessing the file once it 
has been archived and use that handle at a later date to 
retrieve the file. 

A simulation or optimisation may take a long time and 
rather than ever repeat parts of the process it would be 
advantageous to store files for future reuse. For 



performance reasons it is desirable to store files close to 
where they will be used the most, usually the site where 
they were produced. However, accessibility by users at 
other sites in a VO should also be considered if 
collaboration and sharing is to be encouraged. A secure 
and reliable transport mechanism is required and GridFTP 
meets both of these requirements. Unique IDs are used to 
prevent files belonging to different users being 
overwritten. A file location service keeps a record of file 
IDs and locations in a database so that the unique 
identifier is all that is required in order to locate the file.  

When there are numerous result files in various 
locations it becomes difficult to know which ones to 
retrieve when needed and even harder to share them. A 
solution to this problem is to store and retrieve data files 
based on additional descriptive metadata, for example 
standard file metadata such as file name and size, and 
application specific metadata such as the number of 
variables used in an optimisation, and their description or 
numerical values. Providing a way to find files of interest 
based on their characteristics rather than their location in 
a file system gives users a more effective way to manage 
their own data, provides a means for reuse and 
collaboration, and may act as a source for advice based on 
similar examples of a given problem. 

In our architecture we use relational databases for 
structured data such as authorisation information because 
they are mature, reliable and scalable. Relational 
databases also have a well defined standard interface 
which allows the development of generic tools for a 
number of operations such as creating interfaces and 
constructing queries. We have also chosen XML [23] 
repositories for more flexible storage of complex, deeply 
nested engineering application specific metadata. We 
therefore require a set of services that allow us to access 
and interrogate both types of data storage in a standard 
way. Other projects are tackling this problem for 
relational databases [24] and XML repositories [25] and 
we will follow these projects closely and use 
implementations that follow the proposed standards from 
OGSA – DAIS  [6]. 

In Geodise 0.3 we have implemented tailored web 
services that provide API interfaces to specific databases. 
A web service is a self-describing programmable 
component that can be discovered and invoked over the 
web. The web service interface is described in a standard 
format using the Web Services Description Language 
(WSDL) [26]. Methods specified in the WSDL may be 
invoked using the Simple Object Access Protocol (SOAP) 
[27], which uses a combination of XML and HTTP to 
transfer data between web services regardless of their 
underlying programming language or platform. One 
example from the Geodise 0.3 implementation is the 
ability of a Java client code running on Linux to 

communicate, using the Apache SOAP API [28], with 
.NET web services on a Microsoft server. 

The metadata service provides a means for metadata to 
be stored in a database, queried and retrieved by client 
programs. The metadata service must manage a 
combination of standard and application specific custom 
metadata. The existing system uses relational databases to 
store standard metadata and an XML repository for 
custom metadata, as it is a more extensible option. The 
user specifies their custom metadata as a Matlab structure 
which is then converted into XML using the XML 
toolbox for Matlab [29] and sent to the metadata service 
for storage. Similarly, when a query is performed the 
XML metadata results are converted back into a structure 
before displaying them to the user.  

An interactive, graphical query interface is also 
provided in which a user specifies their selection criteria 
in a web form generated based on the metadata structure. 
In this interface there is an option to generate Matlab 
code needed for retrieving selected files that match the 
criteria, which can then be pasted into the user's own 
Matlab script. 

In our current implementation, the authentication of a 
user is achieved by using GSI [20]. Authorisation is 
implemented as a service which uses a database of 
registered users to keep track of permissions on data and 
map between Globus certificate subjects and user IDs. 
Authorisation exists at different levels of granularity and 
must be consistent for metadata and files. A user is first 
assigned a role which determines their access to the 
repository, for example certain roles can write data while 
others may only read data. Role based access models are 
important for collaborative working, when the individual 
performing a role many change over time and when 
several individuals may perform the same role at the same 
time [4][30]. A user’s read access to the repository is 
restricted to their data and that of any other user who has 
granted them permission. 

Table 2 describes the Geodise 0.3 database functions. 
These functions provide users with the ability to store 
files in a repository with associated metadata, query the 
metadata and retrieve the files, providing they have the 
correct access rights. 

 

Table 2: Database commands. 

Function Name Description 
gd_archive Stores a file in a repository with 

associated metadata.  
gd_retrieve Retrieves a file from the repository to 

the local machine. 
gd_query Retrieves metadata about a file based on 

certain restrictions. 
 



The gd_archive function will store a given file in a 
repository for an authenticated user. The function is able 
to generate a structure containing some standard metadata 
for the file, such as its local name, size, format, and 
creation time. The user may add additional metadata, for 
example comments, custom information specific to that 
format, and a list of users or groups who may access the 
file. The function then transports the file to a server using 
GridFTP and also sends the metadata to a database 
accessed via a web service. The gd_archive function 
returns a unique handle which can be used to retrieve the 
file at a later date. 

The metadata that is stored can be queried by an 
authorised user with the gd_query command, in order to 
discover files that have certain characteristics and obtain 
information about them, such as their handle for retrieval. 
The gd_retrieve function will locate a file based on a 
given file handle and return it to a local directory.  
 
3. Geodise 0.3 Application Exemplar 
 

To demonstrate the possible use of our Grid-enabled 
Matlab toolkit we choose a basic problem of fluid 
dynamics, which is the two dimensional, external, laminar 
flow over a NACA four digit airfoil. A sketch of the 
problem is given in Figure 1. At the velocity inlet the 
assumed free-stream velocity profile is constant, and the 
angle of attack is measured in the counter-clockwise 
direction to the horizontal. The upper and lower 
boundaries are periodic, and we have a pressure outlet on 
the right hand side of the computational domain. The 
airfoil profiles are generated by using standard NACA 
four digit expressions [31].  
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Figure 1. NACA four digit airfoil problem 
with boundary conditions. Here αααα is the 
angle of attack. 

The above mentioned problem can be solved by using 
various finite element analysis tools. We will use two 
commercially available codes, i.e. Gambit and Fluent 
[32], for the mesh generation and solution processes, 
respectively. 

In general the process of obtaining a numerical 
solution on a remote Globus server involves at least the 
following steps: 
1. The user generates a Grid proxy by entering their 

password.  
2. The user generates data and input files required for the 

mesh generation and analysis software, and transfers 
them to the remote Globus server. 

3. The mesh generation and analysis tools are run on the 
Globus server and intermediate files are queried to 
retrieve information regarding the mesh quality and 
the convergence of the solution. 

4. If everything seems satisfactory the user transfers the 
simulation results to the local file system, checks the 
objective function values and possibly visualizes the 
simulation results in Matlab, or a third party 
product/plug-in. 
 
Since the Grid proxy is required to use the Grid-

enabled resources, the user initiates their Grid proxy 
certificate by using the gd_createproxy command. 
This command invokes the Java CoG, which in turn pops 
a window where the user can enter their password. After 
the user enters their password and presses the “Create” 
button, a proxy certificate is generated for the user. 

Now, the user generates the vertex file of a NACA 
four digit airfoil, which is simply a text file containing the 
coordinates of the airfoil. The vertex file is transferred to 
the remote Globus server where it will be used by the 
mesh generation tool Gambit. 

The next step involves the preparation of journal files 
for Gambit and Fluent and transferring them to the 
Globus server. These journal files are tailored according 
to various input parameters which are entered by the user. 
A Gambit journal file informs Gambit to use the vertex 
file as the input file, to mesh the domain by using a given 
mesh size parameter, and to export a Fluent compatible 
mesh file as output. Similarly, the Fluent journal file 
instructs that program to use the mesh file as input, to use 
inlet velocity and angle of attack parameters in the 
numerical solution, and to export a data file after the 
solution converges. When the journal files are ready, the 
user transfers them to the remote Globus server by using 
the gd_putfile(<FQHN>, <Local File>, <Remote 
File>) Matlab command. Here, <FQHN> is the fully 
qualified host name of the remote Globus server. A 
snapshot of this step is shown in Figure 2. These steps 
can be categorized as the initial data preparation and 
transfer, and a flowchart of this process is given in Figure 
3. 

 



 

Figure 2. Generating a Fluent journal file in 
Matlab environment, and transferring it to a 
Globus server. Here, the user inputs are the 
inlet velocity and the angle of attack. 

 

 

Figure 3. Initial data flow during the 
generation of the Grid proxy, and 
preparation of data and journal files. 

 
After the initial data preparation step is complete the 

user can submit their jobs to the remote Globus server by 
using the gd_jobsubmit(<RSL>, <FQHN>) command. 
Here, the <RSL> describes the name of the executable on 
the Globus server, the executable's command line 
arguments, the names of standard input, output and error 
files, etc. After the job submission the gd_jobsubmit 
command returns a job handle back to the Matlab 
environment, which is later used to check the status of the 
submitted job.  

Mesh generation and analysis steps are also 
summarized in Figure 4 as a process flowchart. A 
properly generated mesh file is required by the analysis 
tool, the user must generate the mesh file by submitting 
the geometry to the Gambit mesh generation tool. The 
user must wait until Gambit finishes meshing, and the 
Globus server changes its status from ‘ACTIVE’ to 
‘DONE’. Additionally, the user needs to make sure that 
the mesh generation process succeeds, and the quality of 
the generated mesh is acceptable for the analysis tool. 
Therefore, before running the analysis tool the state of the 

mesh generation, and mesh quality are checked by 
transferring the standard error file of Gambit to the local 
file system and parsing the mesh quality information from 
that file. 

 

 

Figure 4. Process flow diagram for mesh 
generation and analysis tools. 

 
If everything is satisfactory, the user now can submit 

the analysis job on the remote Globus server, get back a 
job handle, check the status of the job, and retrieve 
convergence information and objective function values by 
using a very similar process (Figure 5 and Figure 6). 
Finally, the solution can be transferred back to the local 
file system and visualized in Matlab (Figure 7). 
Throughout this process intermediate and solution files 
can be archived in the Geodise repository, with the 
gd_archive command. By associating metadata with the 
files the design archive may be accessed interactively or 
programmatically when required using gd_query (Figure 
8). 

 

 

Figure 5. Running Fluent on the Globus 
server by using a proper RSL string and 
previously generated journal file. The job 
status is polled every ten seconds. 

 



If design search is being carried out this process will 
be repeated as new and possible improved designs are 
considered. If Design of Experiment methods are being 
used to create response surface models [33] multiple runs 
may be scheduled in parallel and the resulting data 
archive used to study the design problem. 

 

 
Figure 6. Transferring Fluent output file to 
the local file system, and parsing it to 
retrieve objective function values. 

 

 
Figure 7. Visualizing the data file in Matlab 

environment. 

 

 

Figure 8. The Web interface showing query 
results from the database. 

 

4. Conclusions and Future Work 
 

The choice of the Matlab environment appears to be a 
pragmatic decision, providing a flexible and robust user 
interface for Grid computing. The Java CoG [17] 
provides a valuable platform independent client side API 
for the access of Globus Grid-enabled resources. 
Database technologies have an important role to play in 
engineering design and optimisation and are suitable for 
managing contextual and technical metadata associated 
with the design processes, and facilitate data sharing 
among engineers. The use of web services for API access 
to databases is beneficial for creating usable client side 
functions and facilitating communication between 
different languages and platforms.  

By exposing the compute and data functionality as 
toolkit components we are able to construct high level 
functions which utilise Grid resources for CFD and 
design search tasks. Given commands in a high level 
interpretive language it is straightforward for the engineer 
to exploit available Grid-enabled resources to tackle 
computationally and data intensive tasks. 

Future work on this project will focus on the creation 
of high level application components. This work will 
include the exposure of heterogeneous legacy code to the 
PSE. Refining the existing low-level compute 
components will involve exposing additional client side 
tools to allow the user to discover the available compute 
resources, and to make an informed decision where to 
submit compute jobs. Support for high-performance third 
party file transfer will be included.  

A future requirement for a fault tolerant data 
management system is the provision of a local personal 
metadata archive which replicates the data stored in the 
main repository so that users are still able to locate and 
retrieve their own files if the central metadata service or 
external network is down. In order to preserve 
consistency between files and their metadata, updates 
must be controlled through the Geodise API. Users 
should be prevented from removing or overwriting files 
in the repository by any other means, for example using 
GridFTP directly. Data lifetime management is another 
issue, i.e., a mechanism is needed to specify how long a 
collection of data will be stored in Geodise repository, 
and be able to extend the lifetime, or perform clean up 
tasks. 

We expect that the architectures of the computational 
and database components will converge with a move to 
an Open Grid Services Architecture (OGSA) [7] model. 
The implementation of OGSA defines a number of 
extensions to standard XML web services that provide the 
common functionality required by both the computational 
and database components. 

 
 



Acknowledgements 
 

This work is supported by the GEODISE e-Science 
pilot project (UK EPSRC GR/R67705/01). The authors 
gratefully acknowledge many helpful discussions with the 
GEODISE team, and researchers from the myGrid e-
Science project team (UK EPSRC GR/R67743/01). We 
thank Fluent, Microsoft and Intel for ongoing support. 
 
References 
 
[1] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of 

the Grid: Enabling Scalable Virtual Organisations, 
International Journal of Supercomputer Applications, 
15(3):200-222, 2001. 

[2] The Geodise Project. http://www.geodise.org/ 
[3] L. Chen, N. R. Shadbolt, F. Tao, S. J. Cox, A. J. Keane, 

C. Goble, A. Roberts, P. Smart. Engineering Knowledge 
for Engineering Grid Applications, Proceedings of the 
Euroweb 2002: The Web and the GRID: from e-science to 
e-business, 12-24, 2002. 

[4] M. P. Atkinson, V. Dialani, L. Guy, I. Narang, N. W. 
Paton, D. Pearson, T. Storey, and P. Watson. Grid 
Database Access and Integration: Requirements and 
Functionalities, Database Access and Integration Services 
Working Group Document, 2002. 

[5] Global Grid Forum. http://www.gridforum.org/ 
[6] A. Krause, S. Malaika, G. McCance, J. Magowan, N. W. 

Paton, and G. Riccardi. Grid Database Service 
Specification, Database Access and Integration Services 
Working Group Document, 2002. 

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The 
Physiology of the Grid: An Open Grid Services 
Architecture for Distributed Systems Integration, Open 
Grid Service Infrastructure Working Group Document, 
2002. 

[8] N. Paton, M. Atkinson, V. Dialani, D. Pearson, T. Storey, 
and P. Watson. Database Access and Integration Services 
on the Grid, UK e-Science Programme Technical Report 
Series, 2002. 

[9] G. von Laszewski, I. Foster, J. Gawor, P. Lane, N. Rehn, 
and M. Russell. Designing Grid-based Problem Solving 
Environments and Portals, 34th Hawaiian International 
Conference on System Science, 2001. 

[10] D. Abramson, J. Giddy, and L. Kotler. High Performance 
Parametric Modelling with Nimrod/G: A Killer 
Application for the Global Grid, Proceedings of the 
International Parallel and Distributed Processing 
Symposium, 520-528, 2000. 

[11] Triana. http://www.triana.co.uk/ 
[12] S. J. Cox. Grid Enabled Optimisation and Design Search 

for Engineering (GEODISE), NeSC Workshop on 
Applications and Testbeds on the Grid, 2002. 

[13] Matlab 6.5. http://www.mathworks.com/ 
[14] H. Casanova and J. J. Dongarra. NetSolve: A Network 

Server for Solving Computational Science Problems, 
International Journal of High Performance Computing 
Applications, 11(3):212-223, 1997. 

[15] The Globus Project. http://www.globus.org/ 

[16] Commodity Grid Kits. http://www.globus.org/cog/ 
[17] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A 

Java Commodity Grid Kit, Concurrency and 
Computation: Practice and Experience, 13(8-9):643-662, 
2001. 

[18] M. Parashar, G. von Laszewski, S. Verma, J. Gawor, K. 
Keahey, and N. Rehn. A CORBA Commodity Grid Kit, 
Concurrency and Computation: Practice and Experience 
(to appear), 2002. 

[19] Java 2. Sun Microsystems Inc., http://java.sun.com/ 
[20] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, 

J. Volmer, and V. Welch. National-Scale Authentication 
Infrastructure, IEEE Computer, 33(12):60-66, 2000. 

[21] IETF PIKX Working Group. http://www.imc.org/ietf-
pkix/ 

[22] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. 
Foster, C. Kesselman, S. Meder, V. Nefedova, D. 
Quesnel, and S. Tuecke. Secure, Efficient Data Transport 
and Replica Management for High-Performance Data-
Intensive Computing, IEEE Mass Storage Conference, 
2001. 

[23] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. 
Extensible Markup Language (XML) 1.0, W3C 
Recommendation, 1998. 

[24]  B. Collins, A. Borley, N. Hardman, A. Knox, S. Laws, J. 
Magowan, M. Oevers, E. Zaluska. Grid Data Services - 
Relational Database Management Systems (Version 1.1), 
Database Access and Integration Services Working 
Group Document, 2002.  

[25] A. Krause, K. Smyllie, and R. Baxter. Grid Data Service 
Specification for XML Databases, Database Access and 
Integration Services Working Group Document, 2002.  

[26] R. Chinnici, M. Gudgin, J. Moreau, and S. Weerawarana. 
Web Services Description Language (WSDL) 1.2, W3C 
Working Draft, 2002.  

[27] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and 
H.F. Nielsen. SOAP Version 1.2, W3C Working Draft, 
2002. 

[28] Apache SOAP. http://xml.apache.org/soap/ 
[29] M. Molinari. XML Toolbox for Matlab (Version 1.0), 

GEM/Geodise Technical Report, 2002. 
[30] D. Pearson. Data Requirements for The Grid: Scoping 

Study Report, Database Access and Integration Services 
Working Group Document, 2002.  

[31] I. Abbott and A. von Doenhoff. Theory of Wing Sections. 
Dover Publications, Inc., New York, 1959. 

[32] Fluent Web site. http://www.fluent.com/ 
[33] D. Jones, M. Schonlay, and M.Welch. Efficient Global 

Optimization of Expensive Black Box Functions, Journal 
of Global Optimisation, 13:455-492, 1998. 


